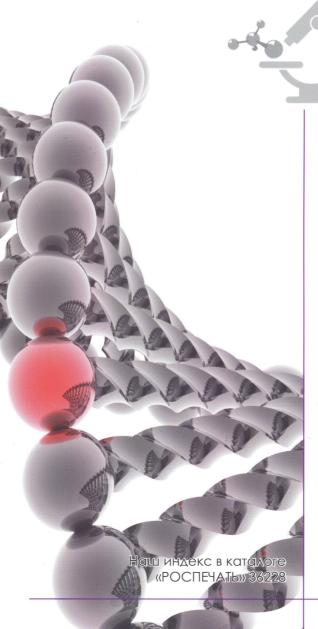


Медицинский алфавит


Серии научно-практических рецензируемых журналов

Современная лаборатория

22 /2013

Modern Laboratory

MEDICAL ALPHABET Russian Professional Medical Journal

- Фундаментальные основы лабораторной медицины
- Разработка, производство, технологии
- Лабораторное оборудование
- Реагенты
- Новые методы
- Практика
- Экспресс-диагностика
- Организация лабораторной службы
- Конгрессы и конференции

www.medalfavit.ru

Компания Micros является членом Британского Королевского общества, имеет сертификат TUV CERT Austria. Каждый микроскоп произведён в соответствии СЕ-нормам и проходит контроль качества.

127015, г. Москва, ул. Бутырская, 62, офис 619

Тел./факс: (495) 287-89-80

E-mail: micros@micros-russia.com

620146, г. Екатеринбург, ул.Ясная,35

тел.: (343) 231-13-08

факс: (343)231-80-10,231-80-20

E-mail: micros@omt-ural.ru

Видеть прекрасное...

О.В. Егорова, к.т. н.

ООО КФ «Микроскоп Плюс», г. Санкт-Петербург

ришло время поговорить о простых и рабочих микроскопах для документирования. Вопрос финансирования в медицинских учреждениях стоит достаточно остро. В этой ситуации для решения задач мониторинга, фиксирования результатов и интересных материалов, обучения, проведения простейших измерений следует сделать правильный выбор между огромным количеством микроскопов, заполнивших наш отечественный рынок. Как всегда выбираем фирму, на примере продукции которой и рассмотрим поставленный вопрос. На примере двух моделей эконом класса мы рассмотрим процесс сравнения собственно микроскопов и цифровых камер, которыми они комплектуются.

Перед нами две модели с цифровыми камерами, недавно представленные на рынок фирмой *MICROS* (*Австрия*). Это рабочие модели *5MP* MCX100 и *HD MCX51*.

Для начала сравним сами микроскопы. При анализе потребительских характеристик можно сказать, что модель HD MCX51 является привлекательной для обучения в институтах и колледжах медико-биологического направления. Привлекательным является новый предметный вращающийся и плавающий столик (см. «Медицинский Алфавит. Современная лаборатория», № 4, 2012, стр. 57-60), которым можно пользоваться, работая как правой, так и левой рукой. Кроме того, плавающая конструкция позволяет использовать стол как препаратоводитель. А вращающаяся конструкция предметного стола при работе с камерой позволяет наиболее точно выставить наблюдаемый участок препарата непосредственно в середину и под тем углом, который наилучшим способом представит объект исследо-

Рабочий микроскоп 5MP MCX100. Рисунок 1.

Учебный микроскоп HD MCX51

вания. Есть еще одно новшество: если микроскоп не функционирует в течение 15 минут, но осветитель включен, то он выключается. Чем не хороший сторож утечки электроэнергии в учебном процессе? Применение камеры также интересно при создании компьютерных классов, позволяющих научить будущих врачей или биологов работе с цифровыми камерами и компьютерами. Интересно и полезно.

Модель 5MP MCX100 может быть привлекательной в плане использования в лаборатории для скрининга или просто документирования интересного материала. Особенно если в рутинной работе хотелось бы зафиксировать интересный случай и направить его на консультацию в другой город.

Краткая сравнительная характеристика обоих микроскопов представлена в табл. 1.

Давайте посмотрим, как основные параметры микроскопа (линейное поле в плоскости препарата) состыкуется с окулярами, адаптерами и камерами. В нашем случае целесообразно знать, какое увеличение и видимое поле на предмете мы наблюдаем на экране монитора. При расчете видимого поля в расчет берется размер матрицы камеры наподобие линейного поля окуляра.

Видимое поле на экране монитора ограничивается размером матрицы камеры. Видимое поле на предмете при наблюдении на экране рассчитывается с учетом увеличения объектива (β_{00}), увеличения допол-

Адаптер.

MICROS Cam 500.

нительной системы ($\alpha_{\text{доп}}$), увеличения адаптера ($\delta_{\text{ад}}$) и диагонали матрицы камеры (2 у).

В качестве дополнительного увеличения принимается промежуточная система увеличения, которая в нашем случае отсутствует. Обычно эти системы устанавливаются в лабораторных и исследовательско-универсальных моделях микроскопов. Они называются по-разному: «ту-

бусные линзы» или «оптовар» Это позволяет дополнительно увеличить размер изображения, передаваемого в окуляр или на матрицу камеры (рис. 2).

Предлагаемые к рассмотрению камеры представляют собой два типа камер. Сказать, какая лучше, можно по нескольким параметрам: разрешение, размер пикселей, размер сенсора, технология сенсора.

В табл. 2 представлены реальные размеры матриц камер в соответствии с их диагональю.

Отсюда мы делаем вывод, что камера с размером сенсора 1/3" — вполне подходящий для нашего рабочего микроскопа. Еще одним подтверждением этому может быть размер линейного поля и величина цифрового увеличения. В табл. 3 приведены значения цифрового уве-

Таблица 1 Сравнительная характеристика микроскопов

Характеристики	HD MCX51	5MP MCX100				
Тип микроскопа	биологический микроск	оп				
Класс сложности	учебный	простой рабочий				
Длина тубуса	бесконечность					
Окуляр	10×/18	10×/20				
Оптика объектива	«PURE» ICO² Plan	ICO ² Plan				
Рабочее расстояние комплекта объективов, мм:						
4×/0,10	26,2	17,8				
10×/0,25	10,0	17,98				
40×/0,65	0,54	4,5				
100×/1,25 МИ	0,13	1,81				
Осветительная система	LED (30000 часов)	галогенная лампа 6 В 20 Вт и LED (30000 часов)				
Особенность осветительной системы	Контроль времени использования; отключение освещения через 15 минут	нет				
Конденсор	Аббе, числовая апертура A = 1,25, вставка для реализации методов контрастирования СП/ТП; СП/ФК или СП/ТП/ФК	Аббе, числовая апертура A = 1,25 с центрировкой				
Вариант исполнения	дорожный (алюминиевый кейс для переноса)					
Дополнительные принадлежности	принадлежность в конденсор для ТП и ФК фазовые объективы; окуляры 10×/20; P16×/12; 10×/18 с точкой или сеткой объект-микрометр	стол с контролем температуры; фазово-контрастное устройство; устройство для темного поля; люминесцентный модуль с ртутным источником света; люминесцентный модуль с LED источником; точки, окулярные сетки; объект-микрометр				
	Документирование					
Визуальная насадка	бинокулярная визуальная; видеовыход с делением светового потока 50: 50%; угол наклона окулярных трубок 30°	бинокулярная визуальная; видеовыход с делениел светового потока 80: 20% (видео: наблюдение); угол наклона окулярных трубок 30°				
Адаптер	C-Mount; увеличение 0,45×					
Камера	камера высокого разрешения (HD Cam)	камера MICROS Cam 500 Premium (5 MP)				
Специализированная программа анализа изображения	нет	Microvisible				
	Камеры					
Параметры	HD Cam	MICROS Cam 500				
Разрешение	720 p	5 Mp				
Технология сенсора	1/3" CCD	CMOS				
Размер матрицы, мм × мм	4,8 × 3,6	5,7 × 4,28				
Размер диагонали матрицы, мм	6	7,13				

личения для полного экрана мониторов разных размеров и для камеры Micros Cam 500.

Стандартно у нас экран монитора порядка 19"и поэтому получается, что дополнительное увеличение на экране монитора будет равным 80,4×.

Из схематичного изображения на рис. З видно, что линейное поле окуляра не влияет на размер изображения на экране монитора при остальных равных условиях. Имеет значение только чувствительный элемент самой камеры, то есть размер матрицы: 1/2", 1/3" или 2/3".

Адаптеры камеры обычно входят в ряд стандартных увеличений: $0.4 \times (0.45 \times), 0.5 \times, 0.63 \times, 1 \times, 1.6 \times$ 2×. Кроме того, существуют адаптеры с плавной сменой увеличения 0,3× — 2×. Последние адаптеры относятся к исследовательским моделям, где малые объекты должны рассматриваться с большим увеличение (например, хромосомы). Следует отметить, что если увеличение адаптера менее 1×, то наблюдаемое поле будет больше, чем в случае, когда увеличение адаптера больше 1×, в этом случае рассматриваемое поле на препарате будет меньше.

Расчет цифрового увеличения ведется с учетом размера чувствительного элемента камеры (как предмета) и размера снимка (кадра) на экране монитора компьютера (как изображения). Отношение изображения к предмету и есть увеличение.

Давайте разберем пример: возьмем комплект объективов стандартного микроскопа 10^{\times} , 40^{\times} , 100^{\times} МИ, дополнительной системы увеличения нет, видеоадаптер $0,45^{\times}$ и две камеры CCD 1/3'' (6 мм) и камеру MICROS Cam500 Premium с диагональю 7,13 мм. Расчеты приведены в табл. 4.

Таблица 2 Размеры матриц камер в соответствии с диагональю

	Тип камеры			
Параметры камеры	1/3"	1/2"	2/3"	
Размер матрицы, мм × мм	4,8 × 3,6	6,7 × 4,8	8 × 6,4	
Размер диагонали матрицы, мм	6	8	10,2	

Таблица 3 Значения цифрового увеличения для полного экрана мониторов и для камеры Micros Cam 500

Desiron Harrist CCD Karroni	Размер экрана монитора					
Размер матрицы ССД-камеры	9))	12»	13»	19»	20»	27»
1/3»	38,1×	50,8×	55,0×	80,4×	84,7×	114,3×

Как видно из таблицы, адаптер $0.45 \times$ позволяет захватить поле на препарате только на 20-15% меньше, чем в окуляре.

Обе камеры полностью обеспечивают тот круг задач, который ставится нашим микроскопам.

Отметим для себя, что при работе как с микроскопом, так и с системами анализа изображения необходимо знать, с какими основными оптическими элементами мы работаем, а также их взаимосвязь.

Большинство программ, используемых для захвата изображений, позволяют выполнять калибровку системы «микроскоп — камера» и устанавливать единичный маркер на изображении. Данный маркер может использоваться как для определения увеличения видимого изображения на экране монитора, так и для

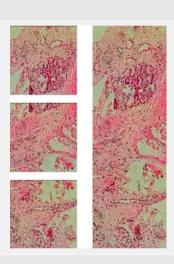
определения увеличения при распечатке изображений. Для калибровки используются объект-микрометры, которые, кстати, входят в комплект принадлежностей к обеим рассматриваемым моделям.

Программа Microvisible наравне с управлением камерой MICROS Cam 500 Premium (5 MP) позволяет производить ряд операций по обработке изображения. Мы остановимся только на одной операции, которая интересна при проведении как биологических, так и медицинских исследований.

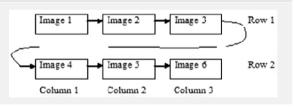
Часто бывает, что препарат значительный по площади, и нам нужно увидеть его полностью и с большим увеличением. Мы уже поняли, что увеличение сильно влияет на размер поля на предмете, а его документирование с помощью камер с раз-

Таблица 4 Расчет цифрового увеличения на экране монитора

Объектив	Увеличение микроскопа с адаптером (без цифрового увеличения на экране монитора)	и спроецированног	поля на препарате о на экран монитора гром 0,45×, мм	Размер видимого поля на препарате и наблюдаемого в окуляр 10×, мм	
		при диагонали 6 мм	при диагонали 7,13 мм	при линейном поле окуляра 18 мм	при линейном поле окуляра 20 мм
10×	$10 \times 0.45 = 4.5 \times$	6: 10: 0,45 = 1,33	7,13:10: 0,45 = 1,58	18: 10 = 1,8	20: 10 = 2,0
40×	40 × 0,45 = 18×	6: 40: 0,45 = 0,33	7,13: 40: 0,45 = 0,39	18: 40 = 0,45	20: 40 = 0,50
100×	100 × 0,45 = 45×	6: 100: 0,45 = 0,13	7,13:100: 0,45 = 0,15	18: 100 = 0,18	20: 100 = 0,20


Панорама «пейзаж»

Первое изображение располагается слева, последнее — справа. В группе должно быть как минимум два корректных изображения. По умолчанию два соседних изображения накладываются друг на друга на ширину 32 точек и должны иметь как минимум 20% неперекрываемой области. Полученное панорамное изображение будет создано в новом окне. Его параметры будут иметь те же значения увеличения и оцифровки, что и первое. Так как изображения совмещаются с наложением, ширина конечного изображения будет меньше, чем сумма ширины исходных изображений. Из-за возможного сдвига исходных изображений по вертикали высота конечного изображения может быть меньше, чем у исходных Кадрирование происходит автоматически


Панорама «портрет»

Изображения должны иметь одинаковые размеры и цветовые модели. Первое изображение располагается сверху, последнее — снизу. Все остальные требования повторяются. Так как изображения совмещаются с наложением, высота конечного изображения будет меньше, чем сумма высот исходных изображений. Из-за возможного сдвига исходных изображений по горизонтали ширина конечного изображения может быть меньше, чем у исходных. Кадрирование происходит автоматически

Панорама «матрица»

Для создания данного нового изображения необходимо иметь четыре корректных изображения. Изображения сшиваются в матрицу построчно, начиная с первой позиции. Первое изображение располагается слева, последнее — справа. Остальные требования аналогичны. Так как изображения совмещаются с наложением, размеры конечного изображения будет меньше, чем сумма размеров исходных изображений. Карирование происходит автоматически

ными размерами чувствительного элемента уменьшает это поле еще на 20–40 %. Поэтому для любого цифрового изображения желательно иметь такую опцию в программе, которая занималась бы так называемой «сшивкой» изображения.

В программе Microvisible такая опция, как «панорама» имеет три вида воспроизведения. Сравнение этих вариантов приведено в табл. 5.

Как видно из сравнительной информации, для рабочих моделей более чем достаточный выбор

программных операций, способных решить поставленную задачу, — документирование разнообразных изображений.